Budgeting & Selecting Soil Health Practices

Using partial budgets & cost-benefit analysis to select soil health practices

Transferring soil health costs to the 'conscious consumer'

What we'll cover in this presentation:

- Using your lab results and soil health goals to choose soil health practices;
- Using costs and benefits analysis to compare and prioritize between soil health practices or between an existing and new soil health practice;
- How to calculate *savings* from windbreaks, carbon amendments, cover crop practices;
- Examples of cost-benefit analysis conducted with farmers in this cohort;
- How to take it one step further by looking at increased or reduced revenue with a Partial Budget;
- Questions on how your lab results, costing and designs.

Lab Results/In-Field Assessment	Goal for soil health	Recommended SH Practices	Rank 1-5	Should installing a windbreak be a priority practice now?	
Low scores in Biological properties (CO2 burst, mineralizable	Increase OM by 1 % in 3 years	Cover Crops Compost	2	Meets SH Goals	
nitrogen, glucosidase enzymes)	Increase biological	Compost Tea			
	activity		1	Low cost to install now	
Low scores in Chemical properties	Add carbon to the soil system	Cover Crops Biochar			
(pH, Organic carbon, Hot water extractable C, DOC:DON*) *If DOC:DON higher than		Green mulch	4	Low labor hours to install and	
	Increase CEC	Cover crop Compost		maintain	
15:1, add nitrogen			_ 5	Will make it easier to install other	
Low scores in Physical Properties	Increase soil moisture	Cover crop Windbreak		soil health practices	
(Bulk density, water			5	Will improve the cash crop this	
		Cover crop Windbreak		season or within this year	
	Improve aggregation	Compost Biochar			

Selecting an order of operation for your soil health practices

Soil Health Practice	Installation Date
In-field windbreak (Saran screen)	Summer 2022
Mulch	Summer 2022
Cover crop	Late Fall 2022 *wait for first consistent days of rain
Perennial ground cover	Late Fall 2022 *wait for first consistent days of rain
In-field windbreak (herbaceous)	Winter 2022
Compost tea & liquid tankage	Spring 2023
Compost (apply on new fields being brought into production)	Spring 2023
Perimeter windbreak (trees)	Early Winter 2023

How to calculate savings for windbreaks, carbon amendments & cover crops

Practice	Savings Category
Windbreak	Reduced evapotranspiration rate of 20-30%, estimated as a reduction in your irrigation bill by this amount.
Carbon amendment	Nutrient contribution amounts from organic matter (estimated in percentage of lbs. of each nutrient from the total OM lbs. for top 6" of soil, est. 2,000,000 lb.)
Cover Crop	Reduced pesticide/weed management (cost of herbicide and labor), reduced fertilizer (accounting for the nitrogen contribution & reduced nitrogen leaching and nutrient contributions from OM).

Supply Price List Last updated 2021

This list is meant as a rough guide to help you think through your potential start up and annual costs for some common supplies. True costs will need to be verified with your chosen vendor and may include additional delivery/transport fees not included here. Note that many supplies are listed in the quantity that the supply comes in instead of buying the exact quantity of your specific need (many farmers hui together to split an order).

ltem	Price	Notes:
IRRIGATION		
1 roll (7500') 8-mil, 8-inch drip tape	\$250	3000' per 1/8 acre plot (10 beds with 3 drip each)
Drip connectors	\$0.35/each	300 per 1/8 acre plot (10 beds with 3 drip each)
Drip connector on/off valves		300 per 1/8 acre plot (10 beds with 3 drip each) *Choose either regular connectors OR on/off valve connectors
Drip Couplers	\$0.75/each	Plan to buy 25 to start for 1/8 acre plot
PVC ball valve (1.5")	\$9/each	
Slip/barbed poly adapter (1.5")	JJ/Cauli	This group of supplies is an example that assumes that you will pull off water from a 1.5 or 2" main source pipe (riser) and you will need to
Barbed poly elbow (1.5")	\$3/each	reduce it to a mainline poly tube that is your header for drip to be connected into. For example, for 1/8 acre plot (50'x100'), you will need 50' mainline 1.5" poly tubing and most likely a few elbows, adpaters and an on/off valve.
500' roll HPE poly tubing (1.5")	\$66/roll	
Mini wobbler or micro sprinkler line to cover 100	\$150-200	For one 100' line of sprinklers, spacing @ 10' = 11 sprinklers plus poly tubing and nipples/adapters.
Irrigation timer	\$50	
Fertigation set up (in line)		https://www.ebay.com/itm/3-4-Garden-Irrigation-Device-Venturi-Fertilizer-Injector-Switch-Water-Tube-Set/113804371627?hash=item1a7f44e6at :g:zsMAAOSwXvRdGxPV
Irrigation Water Meter	\$75-\$100	
FERTILIZER, AMENDMENTS & PESTICIDES		
Soil Testing & Analysis	\$25-75	Estimated price range depends on which lab you go with and quantity of soil samples submitted
Compost	cubic yard	Rate varies accoring to soil test results. Range often varies between 7-20 tons/acre. For 7 tons/acre this works out to be 100lbs per 300 sq ft bed (3' x 100' bed). If you have 10 beds (1/8 acre) this would be 1000 lbs. To convert

How much savings anticipated from Cover Crop/Windbreak Design: Windbreak Costs

Windbreak Details:	 Bamboo (Bambusa botorostachua) 	Total Cost: \$8,651
-----------------------	--	------------------------

Materials	Measurement **	Unit	Water rate (\$/1000gal)	Cost	Source
1' polytubing	570	feet	* Input the rate you	\$188.10	Home depot
6 ft weed mat	570	feet	pay for water (i.e. dollars per 1,000	\$342.00	Home depot
2 gal drip emitters	57	number	gallons) in the cell	\$57.00	Nutrien
Riser	1	number	below.	\$300.00	Nutrien
4-6-4 fertilizer	50	lbs		\$50.00	Nutrien
Gypsum	40	lbs		\$24.00	Nutrien
Bamboo	65	10 gal pot		\$6,500.00	
Water	2,000	1,000 gals	\$0.47	\$940.00	
Mini excavator (rental)	1	day		\$250.00	
	Total estimated of	ost for windbrea	\$8,651.10		

* Adjust the measurement column to reflect the length of your windbreak. The cost column will automatically recalculate.

Estimate water requirements for your windbreak and adjust the water measurement cell. This farm will be establishing a 570 ft long bamboo windbreak, and estimated it would need 2,000,000 gals of water for establishment.

How much savings anticipated from Cover Crop/Windbreak Design: Cover Crop Costs

Cover Crop Design:	• Plantod on 3 acros	Total Cost: \$1,798
-----------------------	----------------------	------------------------

Cover crop species	Seed Cost (per lb.)	Area planted (Acre)		en presentario de la presentación de la construcción de la presentación de la presentación de la presentación d	Irrigation requirements (1000gal/acre/month)	Water rate (\$/1000gal)	Show a filler rank have a filler	Total Irrigation Costs
Sunn hemp	\$2.00	3	40	\$240.00	994.8	\$0.47	1	\$467.56
Piper sudan	\$2.83	3	15	\$127.35	872.4	\$0.47	1	\$410.03
Sunn hemp	\$2.00	3	20	\$120.00	460.2	\$0.47	2	\$432.59
		Total Cover Crop Seed Cost:		\$487.35		Total Cover Cro	p Irrigation Cost:	\$1,310.17

Total cost of cover crop implementation: \$1,797.52

How much savings anticipated from a windbreak/cover crop design:

Cost of cover crop <i>without</i> windbreak:	\$1,798 (\$487 seed cost + \$1,310 irrigation cost)	Annual cover crop irrigation	
Cost of cover crop with windbreak:	\$1,469 (\$487 seed cost + \$982 irrigation cost*)	savings estimate = \$330	

*Irrigation savings based on an leading research, which estimates 20-30% reduced evapotranspiration rate. For this example, we used a 25% reduction in water requirements & irrigation costs.

**Benefits such as potential increase in plant health & productivity due to cooler soil temperatures, less erosion, and less disturbance were not included in the savings estimate.

How much savings anticipated from a windbreak/cover crop design: Example 2

• 1 acre farm with diverse crop rotation, with annual irrigation cost of \$3,060

*Irrigation savings based on an leading research, which estimates 20-30% reduced evapotranspiration rate. For this example, we used a 25% reduction in water requirements & irrigation costs.

**Benefits such as potential increase in plant health & productivity due to cooler soil temperatures, less erosion, and less disturbance were not included in the savings estimate.

How much savings anticipated from compost: Costs

Field size (acres)	Rate	CuYd needed	Location	Delivery cost (HI Earth)	Delivery cost (Island TS)	Compost cost (Island TS)	Compost Cost (HI Earth)	Total Costs (Island TS)	Total Costs (HI Earth)
0.125	Low (2 tons/acre)	0.5	North Shore Region	\$125	\$200	\$19	\$20	\$219	\$145
0.125	Medium (5 tons/acre)	1.25	North Shore Region	\$125	\$200	\$46	\$50	\$246	\$175
0.125	High (10 tons/acre)	2.5	North Shore Region	\$125	\$200	\$93	\$100	\$293	\$225
0.125	Xtra High (20 tons/acre)	5	North Shore Region	\$125	\$200	\$185	\$200	\$385	\$325
1	Low (2 tons/acre)	4	North Shore Region	\$125	\$200	\$148	\$160	\$348	\$285
1	Medium (5 tons/acre)	10	North Shore Region	\$193	\$400	\$370	\$400	\$770	\$593
1	High (10 tons/acre)	20	North Shore Region	\$213	\$450	\$740	\$800	\$1,190	\$1,013
1	Xtra High (20 tons/acre)	40	North Shore Region	\$406	\$950	\$1,480	\$1,600	\$2,430	\$2,006

How much savings anticipated from compost: Savings

Value of Soil Organic Matter

Assumptions: 2,000,000 pounds soil in top 6 inches 1% organic matter = 20,000#

Nutrients:

Nitrogen:1000# * \$0.50/#N = \$500Phosphorous:100# * \$0.70/#P = \$70Potassium:100# * \$0.50/#K = \$50Sulfur:100# * \$0.50/#S = \$50Carbon:10,000# or 5 ton * \$?/Ton = \$0

Value of 1% SOM Nutrients/Acre = \$670

Original Jim Kinsella/Terry Taylor(2006)/revised Jim Hoorman (2011)

How much can you anticipate saving from cover crops?

Cover crop savings can be calculated for:

- Reduced compaction (cost of subsoiler);
- Reduced herbicide (cost of herbicide + labor to apply or weed);
- Contribution of nutrients from cover crop (reduced nitrogen & phosphorus fertilizer needed);
- Reduced nutrients leached/tied-up, standard estimate of up to 80% captured .vs. 30-50% in conventional system.

Compare weed control using conventional practice verses cover crops?

Costs of conventional practice	Savings	Costs	Balance
Herbicide = \$\$\$ (per acre)	\$150		\$150
Labor per herbicide application = 10 hours x 1 pers x \$25 per hour = \$250 x 5 applications = \$1,250.	\$1,250		\$1,250
Total cost of existing practice	\$1,400		
Costs of cover crop		•	
Seed (per acre)		-\$60	-\$60
Irrigation - parts		-\$450	-\$450
Irrigation- water		-\$700	-\$700
Total cover crop costs		-\$1,210	
TOTAL SAVINGS			\$190

Template for a Partial Budget

Benefits (Positive Effects):

- Increased revenue
- Reduced costs

Costs (Negative Effects):

- Decreased revenue
- Increased costs

Name: Sandy Clayton Location: Columbia Basin, Oregon	Resource Concerns/Benchmark Condition: 600 acres of cropland producing 70 bushels wheat and
Date: 2008	50 bushels barley per acre in a two year rotation. Conventional tillage, nutrient and pest management.
	Resource concerns include: Sheet & Rill Soil
	Erosion, Organic Matter Depletion, Compaction,
	Surface Water Contaminants, Plant Productivity, and Wildlife.
Conservation Treatment:	
Conservation Crop Rotation (Winter Wheat/Canola/S	pring Barley)
Residue Management (Direct Seed/No-Till)	
Pest Management (Annual Grasses and Aphids)	
Nutrient Management (Fertilizer Management)	
Positive Effects	<u>Negative Effects</u>
<u>Reduced Costs</u>	Increased Costs
Change in Crop Rotation	No-Till Drill
Decreased fertilizer applied	Pest Management
Reduce six tillage passes over the field Reduce fuel and labor	Nutrient/Fertilizer Management
Reduce fuel and labor	<u>Reduced Revenue</u>
Increased Revenue	Possible lost grazing opportunities
Wheat yield increase	
Financial Assistance Payment	
<u>Other</u>	
Improved soil and water quality	
** * *** ** ** **	
Upland bird habitat improvement	

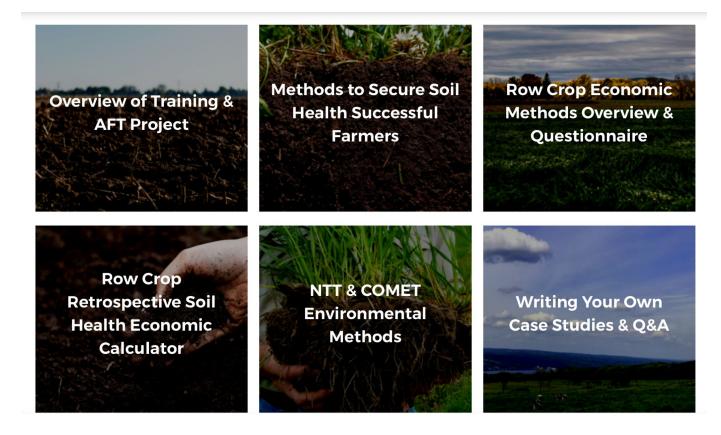
T-Chart, Level I, Cropland – Soil Quality Improvement

policy.

Stay Connected 💷 🖬 🤎 🎵

	Economic Case Studies		
Technical Resources	Case studies are a tool to document producer experiences, and a practical method for improving our planning,		
Conservation Practice Standards	prioritizing assistance, and reaching out to new agricultural producers. These experiences provide a practical		
	source of information that shows how a prescribed treatment can work.		
Natural Resources Assessment	Case studies or "Producer Experiences" are actual stories developed to present social, economic and environmental information on the conservation effects of implementing NRCS conservation practices. Type		
Data, Maps & Analysis			
Tools & Applications	field conservationists will make observations of conservation treatments applied by one or more land user record the effects. Case study information may also be available from conservation field trials, Conservation		
Field Office Technical Guide (FOTG)	Innovation Grant projects, university research plots or other field demonstration sites.		
Engineering	Case studies are used to evaluate the effects of conservation and do not require the degree of detail or the rigo		
□ Economics	of analysis used in university level research. However, they should be much more insightful than casual		
Costs	observation and help us gain a better understanding of the ecological implications of change from current production systems to conservation treatments.		
Data & Analysis			
State Resources	Agency policy states that case studies should be stored in the Field Office Technical Guide (FOTG), Section V,		
References	titled "Producer Experiences" or "Case Studies" for use in future planning efforts and training activities. Differen		
Prices and Indexes	states' FOTG may place case studies in either "Producer Experiences" or "Case Studies" depending on State		

Tools


Environmental Markets & Conservation Finance

ECONOMICS TECHNICAL NOTE 200-ECN-6: Developing Conservation Case Studies for Decision-making

Additional training is available: Conservation Webinar, Using Case Studies to Facilitate Farmer Conservation Decisions IT

Example of AFT's Partial Budget:

https://farmland.org/soil-health-case-studies-methods/

Example of AFT's Partial Budget:

https://farmland.org/soil-health-case-studies-methods/

Economic Effects of Soil Health Practices on MadMax Farms (2018)

Increases	in Net Income	•	
Increase in Income			
ITEM	PER ACRE	ACRES	TOTAL
Yield Impact Due to Soil Health Practices	\$69.00	1,250	\$86,250
Total Increased Income			\$86,250
Decrea	ase in Cost		
ITEM	PER ACRE	ACRES	TOTAL
Nutrient Savings due to Soil Health Practices	\$17.51	1,250	\$21,881
Reduced Seeding Rate for Soybeans	\$5.00	625	\$3,125
Pesticide Savings due to Soil Health Practices	\$18.75	1,250	\$23,438
50% Reduction in Treated Soybean Seed	\$6.00	625	\$3,750
Reduced Machinery Costs Due to Reduced Tillage	\$35.45	1,250	\$44,317
Field Repair Savings due to Soil Health Practices	\$1.00	1,250	\$1,250
Total Decreased Cost			\$97,761
Annual Total Increased Net Income			\$184,011
Total Acres in this Study Area			1,250
Annual Per Acre Increased Net Income			\$147

Decreases in Net Income			
Decreas	e in Income		
ITEM	PER ACRE	ACRES	TOTAL
None Identified			\$0
Total Decreased Income			\$0
Increas	se in Cost		
ITEM	PER ACRE	ACRES	TOTAL
Variable Rate Application Cost	\$3.00	1,250	\$3,750
Increased Soil Testing Every Two Years	\$10.00	1,250	\$12,500
Residue and Tillage Mgt. Learning Activities	\$1.17	1,250	\$1,465
Cover Crops Learning Activities	\$5.86	1,250	\$7,326
Nutrient Management Learning Activities	\$3.32	1,250	\$4,151
Using Biologicals in Furrow	\$30.00	1,250	\$37,500
Increased Machinery Costs due to Change in Nutrient Management	\$6.30	1,250	\$7,875
Cover Crop Costs	\$49.50	1,250	\$61,875
Total Increased Cost			\$136,442
Annual Total Decreased Net Income			\$136,442
Total Acres in this Study Area			1,250
Annual Per Acre Decreased Net Income			\$109

Annual Change in Total Net Income = \$47,569

Annual Change in Per Acre Net Income = \$38

Soil Health Institute Partial Budget Resources:

https://soilhealthinstitute.org/economics/

ABOUT THE RESEARCH

Farmers and ranchers are businesspeople, and the questions that often present the most significant barrier to adoption of soil health management systems pertain to the business case. The Soil Health Institute interviewed 100 farmers in 9 states who have adopted soil health systems and used partial budget analysis to evaluate their economics and answer the following question:

DO SOIL HEALTH PRACTICES INCREASE OR REDUCE PROFITABILITY?

SOIL HEALTH INSTITUTE RESOURCES

https://soilhealthinstitute.org/wp-content/uploads/2021/02/Partial-Budget-Methodology-used-by -SHI-v.-02-08-2021.pdf

Table 1. Description of Costs and Benefits Analysis		
BENEFITS	COSTS	
Reduced Expense	Additional Expense	
Production Inputs	Production Inputs	
Labor	Labor	
Other Operating Expenses	Other Operating Expenses	
Equipment Ownership	Equipment Ownership	
Additional Revenue	Reduced Revenue	
Increased Yield	Decreased Yield	
Increased Crop Price		
Grazing Value		
Forage Harvested		
Total Benefits	Total Costs	
Benefits - Costs = Change in Net Farm Income		

 Table 3. Partial budget analysis¹ of adopting a soil health management system for 100 farms in the nine-state region. Unless shown otherwise, the units are \$/acre (2019 dollars).

	CORN		SOYBEAN	
	Benefits	Costs	Benefits	Costs
Expense Category	Reduced Expense	Additional Expense	Reduced Expense	Additional Expense
Seed	4.08	12.62	2.79	10.02
Fertilizer & Amendments	22.36	1.14	9.20	0.25
Pesticides	9.22	7.90	10.00	8.07
Fuel & Electricity	3.91	1.90	4.33	1.80
Labor & Services	11.13	8.24	10.94	8.24
Post-harvest Expenses	0.18	3.48	0.00	0.93
Equipment Ownership	16.18	11.08	18.41	10.72
Total Expense Change	67.06	46.36	55.67	40.03
	Additional Revenue	Reduced Revenue	Additional Revenue	Reduced Revenue
Yield, bu./acre	7.73	0.39	2.91	0.00
Price Received ² , \$/bu.	4.21	4.20	10.05	10.00
Revenue Change	32.54	1.64	29.25	0.00
	Total Benefits	Total Costs	Total Benefits	Total Costs
Total Change	99.60	48.00	84.92	40.03
Change in Net Farm Income	51.6	0	44.89	9

SOIL HEALTH INSTITUTE RESOURCES

https://learn.oahurcd.org/training-sessions/course/soil-health-cohort-8

Session 8: Branding & budgeting for Your Soil Health Practices

Session 8: Regenerative Enterprise, Decision-Support and Budgeting for Soil Health Practices, (

This session introduces farmers to ways they can begin to market, brand and tap into regenerative mar

Throughout this cohort, farmers have refined the ways they build soil health and restore on-farm ecosys value-added products using regenerative practices is important to conscious consumers and our greate session that will help farmers in the cohort start to think about ways they might expand their farm busine As part of this session, Trinity Asing introduces Mauka Market and examples of ways they've started to v

1 - Partial Budgets & Cost-Benefit Analysis

2 - Creating & Tapping into Local Regenerative Enterprises

Search Lessons...

Indicator	Function and Interpretation		
Physical Properties			
Bulk density (g/cm ³)	Porosity and rooting environment; lower values are better; low bulk density soils are light, porous, and promote root growth		
Water holding capacity (%)	Plant water relations; higher is better		
Water stable aggregates (%)	Water infiltration, porosity, aeration; higher is better; soils with a high percentage of stable aggregates promote water infiltration, hold water, have high porosity, and promote root growth		
Chemical Properties			
PH	Nutrient availability; 6.0—7.0 is ideal, this is the pH range where plant essential elements are most available and toxicities are negligible		
Total organic carbon (%)	Natural resource reserve and overall soil function; higher is better; TOC is a measure of the amount of soil organic matter in soil, soil organic matter benefits all aspects of soil function		
Hot water extractable organic C (mg kg ⁻¹)	Energy source for microbes and readily mineralizable N; higher is better; this pool of extractable C is involved in aggregate formation in addition to its bioavailability		
Biological Properties			
CO ₂ burst (mg C kg ⁻¹)	Metabolic activity of microbes; high equals active microbial community		
Mineralizable nitrogen (mg kg ⁻¹)	Soil biological activity and available substrate for N mineralization; high- er is better; this is a measure of the soil's natural capability to supply plant available N		
β-glucosidase (mg kg ⁻¹)	Microbially produced enzyme associated with C decomposition; higher is better; a measure of soil's natural ability to cycle C		
β-glucosiaminidase (mg kg ⁻¹)	Microbially produced enzyme associated with N mineralization; higher is better, a measure of soil's natural ability to cycle N		

QUESTIONS & FEEDBACK

