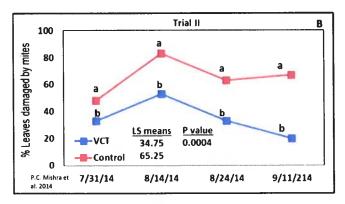
IMPROVING PLANT HEALTH AND IMMUNE RESPONSE


Compost, Compost Tea Benefits: pest and disease suppression

Root Pathogen	Inoculum Density	Suppressive Tea Concentrations	
		Tomato	Cucumber
Fusarium oxysporum	108 spores in 5 ml water drenched onto media	5%, 10%, 20%	••
Phytophthora capsici	10 ⁸ sporangia in 5 ml water drenched onto media	5%, 10%, 20%	5%, 10%, 20%
Rhizoctonia solani	0.1% (v:v) Rhizoctonia cultured ground rice inoculum	5%, 10%, 20%	10%, 20%
Pythium ultimum	0.1% (v:v) Pythium potato-soil inoculum	5°°, 10°°, 20°°	5%, 10%, 20%

Tomato plants infested with nematodes (*Meloidogyne hapla*) and treated with various compost teas.

Suppressive effects of compost teas on various pathogens infecting tomato and cucumber plants.

Vermicompost tea application reduced mite damage on tea plants.

Potential Competitors in Composts

- Pseudomonas aeruginosa, fiuorecens, putida, and stutzeri
- Xanthomonas maltophilia
- Janthinobacterium lividum
- Enterobacter cloacae and agglomerans
- Bacillus cereus, mycoides, and subtilis (Hoitink and Fahy 1986, Dowling et al 1996, O'Sullivan & O'Gara 1992, Shanahan et al 1992).

<u>References</u>: Mishra, S. et al. 2014. Suppression of mites by vermicompost tea on tea plant (Camellia sinensis). Hanai'Ai Vol 21 Radovich & Arancon. 2011. *Tea Time in the Tropics* https://western.sare.org/resources/tea-time-in-thetropics/

System-Acquired (SAR) & Induced-Systemic Resistance (ISR)

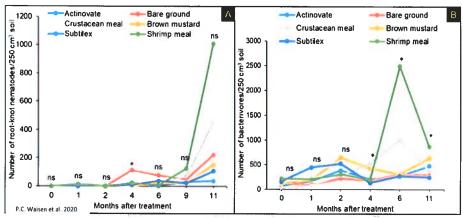
SAR

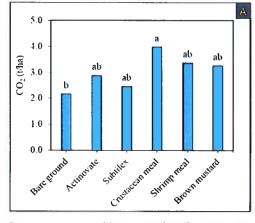
- Regulated by Sallicylic Acid (SA)
- Activated by pathogen infection of healthy tissues
- Defends against sucking Insects

JA/ET

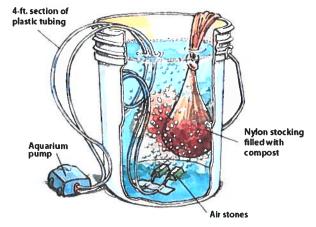
<u>ISR</u>

- Regulated by Jasmonic Acid (JA), Ethylene (ET)
- Activated by beneficial microbes on plant roots
- Defends against chewing Insects


<u>References</u>: Pangesti, N. et al. 2013. Two-way plant-mediated interactions between root-associated microbes and insects: from ecology to mechanisms. Fr. Pl. Sci. 4: 414. Blundell, R. et al. 2020. Organic management promotes natural pest control through altered plant resistance to insects. Nature plants, 6(5), 483-491.


Chitin, Crustacean Meals

Chitin rich materials like crustacean meals stimulate chitonlytic microbes that consume chitin in nematode eggs, arthropod shells, and soilborne pathogens.



Crustacean meal, *Bacillus subtilis*, and biofumigation reduced root-knot nematode populations, increased bacterivores.

Crustacean meal increased soil respiration a.k.a. microbial activity.

<u>References</u>: W. Phillip et al. 2020. Pre-Plant and In-Season Soil Treatment with Chitin Rich Crustacean Meal Suppressed Meloidogyne spp. and Improved Soil Health in an Asparagus Agroecosystem. Poster.

Make Compost Tea

(Image: Garden Gate Mag. 2010)

- 1 part quality compost to 5-20 parts clean water by volume
- Recommended application rate: 7-14 gallons of tea per 1000ft² (Pant et al. 2011)
- Food safety recommendations
 - Make tea only from properly treated compost/vermicompost
 - Use only clean water to make compost tea or to dilute it and sanitize all equipment
 - Avoid additives when fermenting compost tea which can promote pathogen growth

Prepared by Joshua Silva, University of Hawaii Cooperative Extension, April 2022