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Our current understanding suggests that nutrient management strategies applied to

agricultural soils over multiple years are required to cause major and stable shifts in

soil microbial communities. However, some studies suggest that agricultural soils can

benefit even from sporadic, single additions of organic matter. Here we investigate

how single additions of high-quality organic matter can cause significant shifts in

microbial soil communities over multiple cropping cycles. We grew radishes in a tropical

Oxisol soil for six crop cycles after a single application of a high-nitrogen compost

or urea. At planting and before biomass harvest, we sampled soils influenced by the

radish rhizosphere and sequenced bacterial and archaeal 16S and fungal ITS rDNA

marker genes. We measured microbial richness and diversity, community composition

and structure, and constructed correlation networks to predict cross-domain microbial

interactions. We found that a single application of compost, compared to urea or

control, resulted in a persistent improved plant biomass response and led to sustained

changes in the soil microbial community throughout the duration of the 227-day study.

Compost altered the structure of both the fungal and prokaryotic microbial communities,

introduced newmicroorganisms that persisted in the resident soil system, and altered soil

microbial correlation network structure and hub taxa. In contrast, fertilization with urea

did not significantly alter the structure of soil microbial communities compared to the

control but reduced network complexity and altered hub taxa. This study highlights the

significant impacts that high-quality organic matter fertilization can exert on agricultural

soil microbiomes and adds to the growing body of knowledge on using organic fertilizers

as a way to steer the soil microbiome toward a healthier soil.
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INTRODUCTION

Soil microbes are fundamental drivers of soil nutrient dynamics, and our ability to understand and
predict microbial composition and function in agricultural soils is essential for the maintenance
of healthy and sustainable soil ecosystems (1). Soil health, defined as the ability of agricultural
soils to continue to provide ecosystem services while optimizing agricultural yields, consists of
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soil physical, chemical, and biological components (2). Some
common indicators for soil health include soil physical and
chemical characteristics like pH, aggregate stability, water
infiltration, bulk density, soil organic matter content, and
biological indicators like microbial biomass and activity,
microbial diversity, and carbon and nitrogen cycling potentials
(2, 3). Indicators like microbial diversity and community
structure are linked in part to properties like soil pH (4)
and soil organic matter (5–7) highlighting the importance in
managing these soil qualities when considering the health of the
soil microbiome.

Nitrogen management in agricultural systems has a strong
impact on soil quality and the soil microbiome (8–11). Urea
fertilizer, otherwise known as carbamide CO(NH2)2, is the most
common synthetic nitrogen source applied to agricultural soils
to meet crop N requirements (12). Urea is a simple compound,
composed of 46% N, that hydrolyzes rapidly by soil urease
enzyme into carbonic acid and ammonia (13, 14). As a result
of these fast reactions, the promotion of plant growth and soil
microbial community shift is most pronounced immediately after
application (15). The impact of urea on the soil microbiome, both
direct and indirect, however, is less predictable. Some studies
showed that repeated application of urea may decrease soil
health, in part due to an increase in ureolytic prokaryotes whose
presence decreases plant nitrogen use efficiency by promoting
N losses through gaseous forms (i.e., ammonia volatilization
following urea hydrolysis, denitrification following ammonia
oxidation), as well as a general decrease inmicrobial diversity that
provide other ecosystem services (16, 17). However, other studies
suggest that the application of urea fertilizers can increase plant
growth and the resulting abundance of root exudates can in-turn
stimulate microbial activity and increase nitrogen cycling (9, 16).

In contrast, complex nutrient sources such as composts
are also known to boost agricultural productivity directly
by increasing soil plant-available nitrogen (18–20). However,
compost also has indirect benefits to agricultural productivity
primarily associated with its more complex organic compounds,
including enhanced nitrogen use efficiency via the re-coupling of
carbon and nitrogen cycles (21), increased microbial abundance
and activity (18, 22), improved nutrient cycling and disease
suppression (23, 24), better nutrient retention (25), and greater
overall soil quality (26). Therefore, maintaining soil organic
matter via fertilization is a means to both increase soil fertility
and diversify the soil microbiome that can help to maintain
that fertility. However, trends in how the soil microbiome shifts
in response to compost fertilization can vary depending on
soil properties and type of compost (27, 28). However, it is
unclear how the interconnected communities of dominant soil
microorganisms (such as fungi and bacteria) respond to different
quality of fertilizers.

Among the statistical tools available that allow us to connect
the complex interactions in the soil environment, network
analyses offer a promising and unique opportunity to predict
interactions among microbial individuals. Using co-occurrence
patterns, researchers have studied how microbial networks differ
between ecosystems or habitat niches (29, 30), evaluated network
dynamics in response to fertilization (31) or drought (32), and

gained insight into organisms associated with specific ecosystem
functions (33). “Hub” species, that is, taxa that are highly
connected in an ecosystem network by centrality measurements
like degree and closeness centrality (34) may provide insights
into complex microbiomes such as those in soils. Most previous
soil microbial network studies have used single gene amplicon
analyses to gain important insight on prokaryotic and eukaryotic
network interactions. Current inference techniques exist that
allow for analyses among multiple marker genes, giving insight
into associations across biological domains and elucidate, for
instance, the importance of fungi in stabilizing bacterial network
connections in the human lung microbiome (35), or across soil
profiles (36) and rhizospheres after wetups (37). Cross-domain
network analyses applied to the soil microbiome offer unique
opportunities to hypothesize interactions among communities
of fungi, bacteria, and archaea, and how these interactions may
ultimately lead to biological insights relevant to soil health such
as the movement and cycling of nutrients in soil environment.

Despite the active research in this area, making the connection
between nitrogen fertilizer sources to changes in the microbiome
is still not trivial. This study aims to fill knowledge gaps associated
with how soil microbial communities respond to simple
and complex organic nitrogen fertilizers. We employed high-
throughput sequencing techniques as well as recently developed
cross-domain co-occurrence networks to measure community
responses to a single fertilization event of urea and a high N
compost across six planting cycles in a nutrient-poor tropical
Oxisol soil. We hypothesize that complex nitrogen fertilizers
such as compost, when applied to soils, have a detectable impact
on plant growth, soil microbial diversity, community structure,
network topography, and change network hub taxa as compared
to urea, a simple, synthetic nitrogen fertilizer.

MATERIALS AND METHODS

Experimental Design
Plants were grown in a repeated measures design in a climate-
controlled greenhouse with mean daytime temperature of 28◦C
and night time of 22◦C at the University of Hawai’i atMānoa. The
Lahaina series (Very-fine, kaolinitic, isohyperthermic Rhodic
Eutrustox, pH 7.9) was used as the growth medium, chosen
for its naturally low fertility but agricultural importance in
Hawai’i. This Oxisol is comparable to other Oxisols in tropical
regions of the world (38), although the alkalinity, prior use for
sugarcane production, and anecdotal evidence suggests it had
been previously limed. The soil was collected from the 0 to
30 cm depth from an uncultivated field directly adjacent to an
organically managed agricultural system in Waialua, HI (21.555
◦N, −158.117 ◦W). This location had a homogenous vegetation
cover of Guinea grass (Megathyrsus maximus) that helped to limit
the amount of variation in the microbial community due to plant
diversity (39, 40). Collected soil was air-dried, homogenized, and
sieved to 2mm. Plastic pots (7.6 L) with drainage holes, covered
with a fiberglass screenmesh, were filled with 1 kg of acid-washed
sand, followed by 3.5 kg of the homogenized soil mixed with each
fertilizer treatment (urea, compost, and a no fertilizer control) at
an application rate of 100 kg/ha plant-available nitrogen, which
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was determined as the sum of inorganic N content and estimated
mineralizable N. We used a 3% total N EcoSan compost (3–
3.7–1.8, N-P-K), a product of aerobic, thermophilic composting
process from human feces and sugarcane bagasse (41, 42). An
estimated N mineralization rate of 7% was used for compost
based on a recent review of N mineralization in composted
biosolids (43). As such, we added 215.4 g of compost (dry weight)
to each pot (equivalent to 47.6 metric tons/ha). We used urea
(46-0-0, N-P-K) as a contrasting synthetic fertilizer. All N in
urea was considered plant-available. Fertilizers were applied only
once, immediately prior to the first planting. Each treatment
was replicated three times (n = 3) for a total of nine pots
(N = 9). Pots were arranged in a randomized control block
design to account for possible environmental heterogeneity in the
greenhouse. Because the soil had been dried, pots were watered
to field capacity and allowed to equilibrate for 2 days prior
to planting. Nine organic radish seeds (Raphanus raphanistrum
subsp. sativus ‘Cherry Belle’, Burpee) were planted in each pot and
grown for seven days; they were then thinned to three plants per
pot. We chose radishes because of their fast growth from sowing
to harvesting that allows for multiple growing cycles within a
short period of time. Plants were hand-irrigated with deionized
water (100–300 ml/day depending on the weather and stage of
growth) to maintain approximate field capacity. Each cycle of
radishes was grown for 36 days from seed to maturity, at which
point they were harvested. The plants were uprooted, washed
with deionized water, and divided at the crown for below and
aboveground biomass. All three plants per pot were summed
for a total biomass per replicate. Aboveground (shoots) and
belowground (taproots) samples were put into paper bags and
dried in an oven at 65◦C for 2 and 7 days, respectively, for dry
weight measurements. Large radish roots were sliced in half to
facilitate the drying process. At the end of each harvest, pots
were watered and allowed to equilibrate for 2 days prior to the
sowing of the next cycle. These plantings and harvesting cycles
were repeated for a total of 6 crop cycles, or 227 days, beginning
on August 22, 2017.

Soil Sampling
Soil cores were collected immediately after treatment application
(C0) and immediately prior to harvest on the 36th day for
each of the six crop cycles (C1–C6). From each pot, three cores
(1 cm diameter x 10 cm deep, total 63 samples) were taken about
2 cm from each radish taproot. After collection, these cores
were composited and homogenized in a clean plastic bag. A
subsample was put into a 10mL transfer tube and stored in
a−20◦C freezer for microbial analysis. The remaining samples
were air-dried and analyzed for pH using a slurry method with
a 2 to 1 ratio of deionized water:soil. Soil samples collected
after the sixth crop cycle (C6) were analyzed for total carbon,
total nitrogen, and exchangeable cations (Table 1). Soil carbon
and nitrogen concentrations were analyzed by combustion
on an elemental analyzer (Costech 4100 Elemental Analyzer)
at the University of Hawai‘i at Hilo Analytical Laboratory.
Exchangeable calcium, magnesium, potassium, and sodium were
extracted from soils using the ammonium acetate method
buffered at pH 7.0 (44) and analyzed on a Thermo iCAP DUO

7400 ICP-OES. Cation exchange capacity was calculated as the
sum of base cations.

Amplicon Library Preparation
DNA was extracted from 0.25 g of frozen soil using the DNeasy
PowerSoil kit (QIAGEN, Germany) following the manufacturer’s
standard protocol. Fungal and bacterial mock communities
served as positive controls (45). Primer design and sample
barcoding followed a two-step amplification, dual barcoding
system using a combination of a P5/P7 Illumina Adapter, 8 bp
barcodes attached to each adapter, and partial P5/P7 overhangs
(Supplementary Figure 1). For bacteria and archaea, the 16S
rRNA gene (V4 region) was targeted using updated Earth
Microbiome Project primer pairs 515F (46) and 806RB (47).
For fungi, the ITS1 region was targeted using primer pairs
ITS1F (48) and ITS2 (49). High-fidelity, hot-start polymerase
mastermixes were used for the PCR reaction with iProof (Bio-
Rad Laboratories, USA) for 16S and Phusion (ThermoFisher
Scientific Inc., USA) for ITS. Internal testing showed that these
polymerases amplified each respective gene more efficiently. In
the first PCR, the targeted loci (16S, ITS) were amplified under
the following thermocycling conditions using 3-5 ng of DNA: For
16S, polymerase activation at 98◦C for 30 s, followed by 20 cycles
of 98◦C for 10 s, 55◦C for 15 s, 72◦C for 10 s, and a final extension
at 72◦C for 7min; and for ITS, polymerase activation at 98◦C for
30 s, followed by 20 cycles of 98◦C for 10 s, 53◦C for 15 s, 72◦C
for 10 s, and a final extension at 72◦C for 7min. PCR products
were assessed using gel electrophoresis and successfully amplified
samples were cleaned using AMPure SPRI beads (Beckman
Coulter, USA). In the second PCR step, 1 µl of the cleaned
products was used as templates and amplified using a second
set of primers that included P7/P5 overhangs, barcodes, and
Illumina adapters (Supplementary Figure 1) under the following
thermocycling conditions: polymerase activation at 98◦C for 30 s,
followed by 14 cycles of 98◦C for 10 s, 52◦C for 15 s, 72◦C for
10 s, and final extension at 72◦C for 7min. PCR products were
assessed using gel electrophoresis, and cleaned using SPRI beads
as above. Barcoded amplicon libraries were quantified using
a Qubit 3 Fluorometer (ThermoFisher Scientific Inc., USA).
Each sample for a gene library (16S, ITS) was combined at
equimolar concentration, including negative controls according
to Nguyen et al. (45). Gene libraries were then combined at a
ratio of 3:7 (by mass) ITS to 16S, spiked with 11.75% PhiX,
and sequenced together on a single lane of Illumina (MiSeq)
PE250 at the University of California, Davis Genome Center.
Sequence data was deposited in the Sequence Read Archive under
BioProject #PRJNA551045.

Bioinformatics
Sequence data processing and quality control were performed
using the QIIME2 v2018.11 workflow and available plugins (50).
Raw sequences were demultiplexed and primers and adapters
removed. For 16S sequences, ends of sequences with base
quality of q < 25 were truncated, and reads were paired and
denoised using the DADA2 plugin (51). DADA2 Amplicon
Sequence Variants (ASVs) were used for further analyses. For
ITS sequences, conservative regions (18S and 5.8S) that flanked
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TABLE 1 | Chemical properties of soils fertilized with urea or compost, compared to an unfertilized control (n = 3).

Treatment pH Total N Total C Ca2+ K+ Mg2+ Na+ CEC

(mg g−1) (cmol+ kg−1)

Control 7.8 ± 0.04 1.85 ± 0.01b 20.2 ± 0.10 23.4 ± 0.58 0.11 ± 0.006b 2.32 ± 0.05b 0.27 ± 0.011b 26.1 ± 0.58

Urea 7.8 ± 0.03 1.82 ± 0.04b 20.7 ± 1.43 23.1 ± 0.80 0.09 ± 0.014b 2.34 ± 0.10b 0.27 ± 0.011b 25.8 ± 0.81

Compost 7.8 ± 0.03 2.44 ± 0.08a 28.3 ± 3.93 22.0 ± 0.71 0.31 ± 0.075a 2.80 ± 0.08a 0.48 ± 0.036a 25.6 ± 0.72

Three subsamples of soil from each pot were collected, composited, and analyzed at the end of the sixth crop cycle. Letters indicate statistical significance at p < 0.05.

the ITS1 gene were removed using ITSXpress (52), followed by
pairing and denoising as described above. This step was essential
to accurately classify ITS sequences as verified using our mock
community data. Furthermore, DADA2ASVs overinflated fungal
mock community richness (multiple OTUs per species) so it
was necessary to further cluster these OTUs into 97% similarity
OTUs using open reference clustering via the VSEARCH plugin
(53). This clustering was essential to accurately recover the
expectedmock community diversity in the dataset (45). Hereafter
both 16S DADA2 ASVs and ITS 97% clustered OTUs will
be referred to simply as OTUs. The Naïve Bayes Classifier
was used to classify OTUs using the Greengenes Database
specifically trimmed for the primer pairs 515F-806R (gg-13-8-99-
515-806-nb, (54) for prokaryotic 16S, and the UNITE database
version 7.2 (55) for fungal ITS. For 16S, sequences classified as
“unassigned”, “mitochondria”, or “chloroplast” were removed.
For ITS, only sequences that aligned with at least 70% of reference
sequences were kept. Internal validation showed that sequences
that do not currently match to 70% of the UNITE v7.2 database
are typically non-fungal. Sequences labeled as “unassigned”,
“rhizaria, “Protista”, and “Metazoa” were removed. Negative PCR
controls showed a maximum occurrence of 3 OTUs for fungi
and 6 OTUs for bacteria and archaea. As a quality control
measure, these maximum occurrence numbers from the negative
control were then used as minimum occurrence thresholds for
the rest of the data. As a result, only OTUs that had more
than 7 sequences were kept for the 16S dataset and only OTUs
that had more than 4 sequences were kept for ITS. The 16S
dataset was rarefied to 2831 sequences, and the ITS dataset was
rarefied to 514 sequences. Sampling saturation was variable for
datasets (Supplementary Figure 2). Trophic guild data for fungi
was identified using FUNGuild (56).

Statistical Analyses
Statistical analyses were conducted in R version 3.5.1 (57) and
QIIME2 version 2018.11 (50). A repeatedmeasures approach was
used to compare changes in above and below plant biomass as
well as microbial community richness and diversity as response
variables to the different fertilizer treatments and control. A
generalized least squares (GLS) model was chosen due to its
flexibility when dealing with observations across time (58),
which is common for repeated measures experiments with
autocorrelated residuals (59, 60). The GLS model yi = X iβ + εi,
εi ∼(Vi), was created using the “lme” function in the package
nlme (58), where yi denotes the outcome variable for the i-th
group (our response), Xi is the designmatrix for the fixed effects β

(Treatment+ Time; Treatment & Time interactions) and Vi, the
variance-covariance matrix for the error terms. Vi was specified
to CorAR1, which confined errors within each individual
replicate (pot). For the biomass data, a box-cox transformation
was performed to meet the assumption of normality and equal
variance. An Analysis of Variance (ANOVA) was performed
using the “anova” function in base R. Pairwise comparisons of
least-squares means were calculated for sample groupings by
both treatment and time. These were calculated using functions
“lsmeans” and “cld” via the lsmeans and emmeans (61, 62)
packages. Least-squared mean comparisons were averaged over
the levels of treatment using the Satterthwaite method (63)
at a confidence level of 0.95. For the biomass data only, the
“glht” function in the multcomp package was used (64). Pairwise
comparisons were corrected for multiple comparisons with the
Tukey p-adjustment.

Sequence reads obtained through high-throughput
sequencing are compositional (65). Hence, in our community
composition analysis, we followed protocol as suggested for
compositional datasets. The first steps of data wrangling were
conducted in R using the vegan package (66). First, unrarefied
abundance matrices were normalized using the function
“decostand” followed by the Hellinger square root method
(67). We found this was sufficient in balancing our data. Next,
Euclidean distances were created using the function “vegdist” on
the transformed data matrices. We chose Euclidean distances
as our metric for dissimilarity because of their appropriateness
in Eigenvector-type analyses such as Principal Components
Analysis (68–70), which we used for visualization. Community
composition was compared using the function “adonis2”, which
conducted permutational analysis of variances (PERMANOVAs)
on the Euclidean distances as grouped by treatment. These
PERMANOVAs were performed at the first crop cycle (1)
and then included subsequent crop cycle accumulations (crop
cycles 1–2, 1–3, 1–4, 1–5, and 1–6). This allowed us to compare
how samples grouped in “species-space” at different points
throughout the study. Comparisons were conducted using both
an un-nested approach that looked at interactive effects and a
nested approach that limited errors within “strata” of time within
each crop cycle. Pairwise comparisons of treatment groupings
were performed using the Wilks statistic with FDR corrections
for multiple testing (59) via the function “pairwise.perm.manova”
from the package RVAideMemoire version 0.9–72 (71). Results
were visualized using ggplot2 (72) and sjPlot (73).

To determine how different fertilizer types affected the
abundance of any specific OTU, we conducted an Analysis
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of Composition of Microbiomes [ANCOM, (74)], using the
“Composition” plug-in for the QIIME2 platform. ANCOM is a
robust analysis tool that uses compositional constraints to reduce
false discoveries and can improve identification of differentially
abundant microbes in complex datasets (75). Differences in
relative abundances across treatments were compared at each
crop cycle for both fungi and prokaryotes. To differentiate
changes that could be confounded by time, relative abundances
of OTUs were also compared across crop cycles. This occurred
for crop cycles (1–6) for fungi, and because of computational
power constraints even at the supercomputer level, weminimized
analysis of prokaryotes at intervals of crop cycles (1–4 and 4–
6). In addition, we performed a similar test, “log2FoldChange”,
for changes in the microbiome using the package DESeq2 (76)
to detect significant changes in OTU relative abundance between
urea and compost treatments for cycle 1 and cycle 6.

Network Construction
All microbial association networks were created using the R
package SPIECEASI (77). The SPIECEASI method was chosen
because it was developed for compositional data analysis and
assumes taxon-taxon associations scale linearly with the number
of measured taxa. It also features greater precision when
compared to other methods such as CoNet, gCoda, SparCC, and
Spearman network inferences (34). Best-practices in microbial
association network construction require large sample sizes to
increase the precision of networks (34, 77). Although the sample
size in our study was small (n = 3 for each treatment), we found
that time across the 6 cropping cycles, although significant, had
a much smaller effect in shaping microbial community structure
when compared to the effect of the fertilization treatments. The
effect of time across cropping cycles had an R2 value ranging
from 0.022 to 0.067 for fungi and 0.024 to 0.062 for bacteria
& archaea, as compared to the effect of fertilizer type with R2

ranging from 0.298 to 0.387 for fungi and 0.041 to 0.117 for
bacteria & archaea (Table 2). Because time across cropping cycles
explained a much smaller portion of the variation compared
to treatment, we combined samples from all crop cycles (C1–
C6) for each fertilizer treatment, which allowed for network
inference with a pseudo n = 18 (3 pots x 6 cycles). Using these
combined data, we created prokaryote networks for bacteria
& archaea alone, fungi alone, and a combined network of
bacteria, archaea, and fungi. We recognize that the prokaryotic
network is technically a cross-domain network, but for ease of
discussion, will refer to the combined network as the cross-
domain network henceforth.

To reduce the likelihood of false positive associations
within networks, OTU counts were first filtered for minimum
occurrence across ∼33% of samples using the R package
Phyloseq (78). OTUs with 0 abundance were filtered out of
any individual sample, but their sums across the whole dataset
were kept so as not to change the overall sample counts.
SPIECEASI networks were then assembled via the “spiec.easi”
function using the Meinshausen and Bühlmann or “MB” method
(79) with a pulsar parameter threshold of 0.05 and lambda
minimum ratio of 1e−2 following basic user guidelines (77,
80). The function “multi.spiec.easi” was used for creating

TABLE 2 | PERMANOVA comparison of community differences across cropping

cycles for prokaryotes and fungi.

Prokaryotes Fungi

Time Time

Crop cycles R squared P-value Crop cycles R Squared P-value

2 0.06163 0.025 2 0.067 0.103

3 0.04326 0.001 3 0.044 0.117

4 0.03612 0.001 4 0.022 0.267

5 0.02845 0.001 5 0.03153 0.001

6 0.02417 0.001 6 0.034 0.021

Fertilizer type (unblocked) Fertilizer type (unblocked)

Crop cycles R squared P-value Crop cycles R squared P-value

1 0.2492 0.626 1 0.37536 0.045

2 0.11696 0.446 2 0.32728 0.001

3 0.07904 0.06 3 0.306 0.001

4 0.05978 0.014 4 0.387 0.001

5 0.04896 0.002 5 0.30217 0.001

6 0.04133 0.001 6 0.29788 0.001

Fertilizer blocked by time Fertilizer blocked by time

Crop cycles R squared P-value Crop cycles R squared P-value

2 0.116 0.635 2 0.327 0.002

3 0.079 0.066 3 0.306 0.001

4 0.0597 0.006 4 0.386 0.001

5 0.0489 0.002 5 0.302 0.001

6 0.0413 0.003 6 0.297 0.001

Comparisons were constraint by treatment and time. All analyses were compared to the

first crop cycle as a basepoint to show how community shifts relative to this point.

cross-amplicon networks under the same parameters. Resulting
networks were visualized in Cytoscape V-3.7.1 (81) and network
topological properties were assessed using NetworkAnalyzer
(82). Subnetworks were created by selecting individual hub
OTUs from the CytoScape interface, selecting nearest-neighbors
of those OTUs, and then creating a new network from the
combined selections.

Network hub taxa were selected based on node degree (the
number of edges linked to that node) and closeness centrality
(how close a node is to all other nodes) as measurements
of overall network connectivity using NetworkAnalyzer in
Cytoscape. Currently, there is no consensus for what determines
statistically significant network hub taxa, although previous
studies determined good candidates by selecting those with
higher node degree, betweenness centrality, or closeness
centrality based on normal distribution fit with p < 0.1 and
correlation cut-offs (83, 84). The SPIECEASI method of network
inference is a conservative method that although results in fewer
connections than other inference tools, can help to reduce false
positives (77, 80). Therefore, we took a simpler approach for
determination of hub taxa that did not dismiss non-outliers by
choosing the top 5 OTUs that contained the highest degree and
closeness centrality for each treatment. We limited our network

Frontiers in Soil Science | www.frontiersin.org 5 April 2022 | Volume 2 | Article 749212

https://www.frontiersin.org/journals/soil-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/soil-science#articles


Heisey et al. Compost Impacts Microbes and Networks

1

2

3

C1 C2 C3 C4 C5 C6

W
e

ig
h

t 
(g

)

0

2

4

6

C1 C2 C3 C4 C5 C6

W
e

ig
h

t 
(g

)

Crop Cycle

A

B

FIGURE 1 | Plant growth response (A) aboveground and (B) belowground to

compost (circles) and urea (triangles) fertilization as compared to unfertilized

controls (squares) over 6 crop cycles. Asterisks (*) denote significant treatment

differences within each cropping cycles compared to the control. Error bars

indicates standard error.

hub taxa analysis to only the cross-domain networks as these
were the most comprehensive network inferences.

RESULTS

Plant Growth, Soil Chemistry, and Microbial
Community Response to Fertilization
At the end of the experiment, fertilization treatments did
not significantly affect soil pH, which averaged 7.8 across all
treatments (Table 1). There was a significant treatment effect
on soil total N (p = 0.0002) and a marginally significant effect
on soil carbon (p = 0.0696). Compost increased concentrations
of soil nitrogen and carbon relative to both urea and control.
There was no significant treatment effect on cation exchange
capacity by the end of the sixth crop cycle. Calcium was the
dominant cation across all treatments. Compost significantly
increased concentrations of potassium (p = 0.0031), magnesium
(p= 0.0069), and sodium (p= 0.0005).

Plant growth responded differently to treatments in the six
consecutive cropping cycles following a single initial application
of urea or compost (Figure 1). When compared to the control,
compost fertilization significantly increased both aboveground
and belowground plant biomass for all crop cycles (p < 0.01).
Urea fertilization, in contrast, only significantly increased above
and belowground plant biomass in the first crop cycle (p<0.001).
When the treatments were compared to each other, compost had
greater biomass relative to the urea treatment for crop cycles 2–6
(p < 0.001).

Fertilizing soils with either compost or urea affected microbial
richness and diversity differently (Figure 2). Fertilizer type did
not affect prokaryote richness (p = 0.850), Shannon’s Index (p

= 0.984) nor Faith’s Phylogenetic Diversity (p = 0.635). These
metrics remained stable across the six cropping cycles (p >

0.4). These patterns were somewhat different for fungi where
fertilization did not affect overall richness (p = 0.326) and
Shannon’s Index (p= 0.628) when compared to unfertilized soils,
but over the six cropping cycles richness (p= 0.001) and diversity
(p= 0.004) significantly decreased. Fungal richness and diversity
were highest immediately following fertilization of field-collected
soil prior to first sowing of seeds, then continued on a decreasing
trend until the sixth cycle. These effects were observed for both
urea and compost fertilizer sources.

We compared changes in microbial communities of different
fertilizers across the six cropping cycles relative to the first
cycle and found that fertilizer type significantly changed soil
microbial community composition, but these effects were latent
in prokaryotic communities (Figure 3, Tables 2, 3). Fungal
communities in compost-fetilized soil differed significantly from
unfertilized controls (p< 0.013) and urea (p< 0.013), but did not
differ between urea-fertilized and unfertilized soils (p > 0.327)
(Table 3). The variation in the data explained (R2) across the
six cycles ranged from 0.297 to 0.386. Prokaryotic communities
did not respond significantly to fertilization until the third
crop cycle (p = 0.025) with increasing statistical significance
until the sixth cycle. Similar to the fungal communities,
prokaryotic communities from compost-fertilized soils differed
from unfertilized control (p < 0.048) and urea (p < 0.036),
while communities in control and urea-fertilized soils were
not statistically different (p > 0.27). The variation in the data
explained (R2) across the six cycles ranged from 0.249 at the first
crop cycle, and consistently decreasing to 0.041 in cycle 6.

Fertilizer type significantly changed the relative abundance
of certain individual fungal OTUs based on ANCOM analysis,
but trends were more prominent for fungi than for prokaryotes
across the 6 cycles (Supplementary Table 1). Two fungal OTUs,
Thermomyces lanuginosus and a Myceliophthora sp. were more
abundant in compost-fertilized soils. Thermomyces lanuginosus
was more abundant for crop cycles 1 (w-score = 142), and crop
cycle 6 (w = 146), while Myceliophthora sp. was more abundant
in the second (w = 283), third (w = 245), fourth (w = 227), and
fifth (w = 205) crop cycles. A Pezizaceae sp. was more abundant
in the control and urea treated soils, but only at crop cycle 4.
Only one bacterial OTU, an unidentified Acidomicrobiales, was
more abundant in the control treatment at the first crop cycle (w
= 3952). No differences in the relative abundance of prokaryotic
OTUs were detected across all crop cycles.

Fold change analysis of OTU relative abundance in urea vs.
compost treatments showed that prokaryotic taxa responded
more strongly in crop cycle 1, whereas fungi responded
more strongly in crop cycle 6. We detected 214 OTUs within
42 taxa (mostly at the genus level but some could be not
assigned) that responded either strongly to urea or compost
fertilization (Figure 4). Of these, OTUs of Actinomadura,
Catellatospora, Iamia, Phytohabitans, Parasegitibacter,
unidentified Chloroflexi, Nitrospira, Gemmata, Planctomyces,
Arthrospira, Dechloromonas, Devosia, Luteibacter, Massilia,
Tepidimonas, Opitutus, and Prosthecobacter significantly
increased in abundance in urea-fertilized soils. In contrast,
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FIGURE 2 | Observed OTUs and Shannon’s Diversity index measuring the community responses of (A) prokaryotes and (B) fungi to fertilizer treatments over six crop

cycles, including soils prior to planting (C0). Circles indicate compost treatment, triangles indicate urea treatment, and squares indicate controls. Asterisks (*) denote

significant treatment differences across all crop cycles. Error bars indicates standard error.

TABLE 3 | PERMANOVA and pairwise comparisons of community changes across treatments.

Crop cycle PERMANOVA Pairwise comparison p-values

R2 p-value Compost vs. control Compost vs. urea Urea vs. control

Fungi

1 0.375 0.052 0.3 0.3 0.4

2 0.327 0.001 0.013 0.013 0.545

3 0.306 0.001 0.0015 0.0015 0.334

4 0.386 0.001 0.0015 0.0015 0.679

5 0.306 0.001 0.0015 0.0015 0.334

6 0.297 0.001 0.0015 0.0015 0.327

Bacteria and Archaea

1 0.249 0.589 0.8 0.8 0.8

2 0.116 0.464 0.79 0.79 0.84

3 0.079 0.025 0.034 0.024 0.815

4 0.597 0.018 0.048 0.036 0.721

5 0.0489 0.001 0.0075 0.006 0.534

6 0.0413 0.001 0.012 0.006 0.27

Pairwise comparisons used Euclidean distances using Wilk’s statistics with FDR p-valuecorrection. All analyses were compared to the first sampling as a basepoint to show how

community shifts relative to this point.

Kibdelosporangium, Mycobacterium, Rubrobacter, Streptomyces,
Flavisolibacter, an unidentified Nitrospiraceae, unidentified
Pirellulaceae, Geobacter, Hyphomicrobium, and Reyranella
significantly increased in abundance in compost-fertilized soils.
Other genera contain OTUs that show different preferences for
the different types of fertilizers. No differences in the relative
abundance of prokaryotic OTUs were detected at crop cycle 6.

We found only one OTU of fungi, Thermomyces lanuginosus,
that significantly favored compost at crop cycle 1, but six OTUs
at crop cycle 6. These were Acremonium dichromosporum,
T. lanuginosus, a Myceliophthora sp., and three unidentified
Ascomycota in the orders Sordariales and Eurotiales. General
visual comparisons of all OTUs aggregated at the phylum level
across all 6 cycles can be found in Supplementary Figures 3, 4.
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FIGURE 3 | Principal component analysis (PCA) ordination showing (A) prokaryotic and (B) fungal community similarity. Each panel shows an accumulation of

samples, starting with crop cycle 1 (C1) and ending at cycle 6 (C1-6). Asterisks (*) denote PERMANOVA significant treatment differences across crop cycles.

Soil Network Complexity
Soils treated with fertilizers altered network topography for
the individual prokaryotic network, the fungal network, and
the cross-domain network (Figure 5). Network complexity, as
measured by the number of nodes and edges, increased when
compost was added to the soil, and decreased when urea was
added, relative to the control. For the prokaryotic network,

the control contained 134 nodes and 150 edges, the compost-
fertilized network was higher with 141 nodes and 217 edges, and
the urea-fertilized network was fewer with 117 nodes and 154
edges. We observed a similar trend for the fungal networks. The
control network had 14 nodes and seven edges, the compost-
fertilized network was higher with 44 nodes and 31 edges. The
urea-fertilized network, however, had 18 edges and 11 nodes,
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both of which were higher than the control. The cross-domain
networks followed this trend as well where the control network
had 229 nodes and 372 edges, the compost-fertilized network
had the highest number of 248 nodes and 408 edges, and
the urea network had the lowest number of 207 nodes and
307 edges.

Within the networks, fertilizer type had a strong effect on
network hub taxa. Not only did fertilizer type affect which OTUs
became hub taxa, but it affected how they were connected in
the overall networks (Figure 6). The compost-fertilized network
contained three bacterial (a Nostocaceae sp., Steroidobacter sp.,
Bradyrhizobiaceae sp.) and two fungal (Lasidioploidia lignicola,
and Tetracladium furcatum) hub taxa. The unfertilized control
network contained three bacterial (a Nostocaceae sp., Rhizobiales

sp., Micrococales sp.) and two fungal (Hypocreales sp., and
Aspergillus purpureus) hub taxa. The urea-fertilized network
contained one bacterial taxon (a Solirubrobacteriales sp.) and four
fungal (Ascomycota sp., Aspergillus sp., Trechispora sp., and an
unidentified fungus) hub taxa. Only one OTU, a member of the
Nostocaceae, was present as a hub taxon in both the unfertilized
soil and compost-fertilized network, but not the urea-fertilized
network. Each hub taxon in the compost-fertilized network was
directly connected to other hub taxa, and indirectly connected
to 2 or more other hub taxa. In stark contrast, the hub taxa
in the unfertilized network shared only indirect connections
to other hub taxa, and averaged less than two connections
to other hub taxa. Hub taxa in the urea-fertilized network
similarly had fewer direct and indirect connections, including
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FIGURE 5 | Visual and quantitative measures of association networks for prokaryotes, fungi, and cross-domain across compost, urea, and control. Complexity of

networks are represented here by nodes and edges, which may be inferred as predicted interaction, either positive or negative, and are colored by a measurement of

edge betweenness, a component of network centrality (85).

one hub taxa that was not connected to any other hub taxa by
nearest neighbors.

A comparison of OTUs found in the ANCOM analysis
with those from the hub taxa analysis showed that the
taxon Thermomyces lanuginosus (significantly more abundant
in compost-fertilized soil) was directly connected to a hub
taxon, a Steroidobacter sp. (Supplementary Figure 5). The
Myceliophthora sp. was found in a separate node cluster and
was neither a hub taxon nor connected to one (data not
shown). No other taxa from the ANCOM analysis were found
to interact closely with network hub taxa of any treatment
group. The same T. lanuginosus and Myceliophthora sp. were
also detected in the fold change analysis, favoring compost-
fertilized soil.

DISCUSSION

In this study, we provided direct evidence that a single
application of a synthetic N source or a more complex N
compost prior to planting can have different effects on plant

growth, soil microbial composition and network complexity,
but not microbial richness and diversity. High N composts
can be an effective plant fertilizer in tropical soils (86, 87)
especially in the nutrient-poor Oxisols used in this experiment.
Compost imparted greater residual effects on plant growth than
urea throughout the experiment. These trends were expected
since urea is rapidly hydrolyzed by soil bacteria and fungi
to provide a readily available N source (i.e., NH+

4 ) at the
beginning of the first growth cycle (88, 89). This NH+

4 can
be taken up by plant roots, consumed by microorganism,
lost through ammonia volatilization (17) or be converted by
ammonia oxidizing bacteria or archaea to nitrate (16). The
nitrate is either taken up by plant roots, immobilized by
microorganisms, denitrified, or leached out of the soil system
with percolating water (90). The labile N pool in compost
is subjected to the same fates, but compost also contains
N sources associated with more complex organic compounds
that mineralize N more slowly through microbial-mediated
transformations (27, 91, 92). In this sense, high N organic
compost not only provides a rapidly available nutrient pool upon
application but also provides a slowly available pool of organic
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FIGURE 6 | Cross-domain subnetworks showing hub taxa and their interactions across (A) compost, (B) control, and (C) Urea. Bacterial nodes are represented by

orange circles, and fungal nodes are represented by black triangles. Inset shows the location of the subnetworks (red) within the full cross-domain network (blue).

Bacterial nodes are indicated by orange circles and fungal nodes are indicated by black triangles. Edges between nodes represented a positive association (green) or

negative association (red).

nitrogen, including the many additional benefits of substrates
rich in organic matter that continues to support plant growth in
subsequent cycles.

The relatively low to no plant response to urea fertilization
contradicts expectations given that urea is also known to be
an effective seasonal N fertilizer in agricultural systems in the
tropics and elsewhere (93). Considering that urea is rapidly
hydrolyzed, we would not expect residual effects of urea on
crop growth or soil total nitrogen across multiple subsequent
crop cycles, and this is reflected in our results. However, we
would expect that there would be less of a difference in plant
biomass between the two fertilizer types since they were applied
at an equivalent available N basis. The observed significant
differences between plant biomass may be explained through
volatilization of a substantial portion of urea-N that reduces plant
nitrogen use efficiency and thus plant growth (17). An alternative
explanation is that plant growth was limited by deficiencies
in other essential nutrients, such as phosphorus or potassium,
especially considering that Oxisols tend to have low capacity to
retain and supply nutrients (94). Compost, on the other hand,
supplies the plants with more than just N (e.g., P, K, etc. . . ),
thus potentially alleviating multiple macro- and micronutrient
deficiencies. While the compost treatment did not alter cation
exchange capacity of the soil, as base saturation was dominated by
calcium, it did increase concentrations of potassium, magnesium,
and sodium.

Although a single application of different fertilizer types
can have significant effects on plant growth, it did not affect
the overall microbial richness and diversity. This finding was
unexpected in the soils fertilized with compost given that
composted materials often contain a diversity of microorganisms
(95) thereby having the potential to increase a soil’s richness
and diversity. However, Pérez-Piqueres et al. (27) showed that
community responses may be dependent upon the nature of the
compost in combination with soil types. In addition, changes
in physicochemical properties favoring microbial proliferation
might be a more important factor for the soil community

response to compost fertilization than the compost-borne
organisms themselves (96). Urea fertilization also did not
decrease microbial richness and diversity. These results suggest
that a longer time period of urea fertilizer applications is
perhaps necessary to observe the effects of decreased bacterial
diversity (18, 97). Repeated planting through time did not change
prokaryotic diversity but did have an effect on fungi. These
measures were highest in the field-collected soil before active
radish growth, suggesting a possible selection process in the
rhizosphere as an effect of the active radish growth (98), in part
through the production of carbon and energy rich compounds,
and bioactive phytochemicals (99).

This study provides evidence that the type of soil fertilizer can
affectmicrobial community composition differently. The concept
that organic fertilizers can have a strong impact on soil microbial
communities is reflected in previous literature investigating
microbial community shifts under long term organic vs.
conventional management systems (27, 96). In the present
study, even single applications of compost caused detectable
continued community shifts relative to the first sampling point
for the duration of this 227-day study. Conversely, the microbial
community did not significantly shift in response to a single
application of urea fertilizer, although we did detect significant
shifts in certain genera. Previous research suggests that negative
impacts on the community can occur due to the repeated use of
synthetic N fertilization over long periods of time (18, 97, 100);
however, short-term applications, like in this study, may not be
enough to inhibit resident microbial composition (18). This work
reflects our current understanding of how disturbance events
(such as those caused by fertilization, especially compost), can
significantly shift microbial communities, and that the legacy
effect left by roots grown in the previous cycle is not likely
the strongest driver of soil microbial communities (101). The
contrast in microbial community shifts between compost and
urea highlights the need to better understand the mechanisms
of how each of these fertilizers may affect bacteria and fungi
differently. This is especially important if we were to more
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effectively apply as a means to reduce plant pathogens or
improving soil health and fertility in the tropics (102, 103).

To gain a more nuanced understanding of how different
members of the microbial community respond to the urea or
compost treatment as opposed to whole community analyses
discussed above, we applied ANCOM and DESeq analyses that
identify significantly associated with experimental variables. Of
the genera that favored urea-fertilized soils, increases in the
genus Nitrospira, and OTUs of the phylum Chloroflexi are
consistent with the increases in ammonium nitrogen found in
the urea-fertilized soils. Nitrospira contribute to nitrogen cycling
by oxidizing nitrite to nitrate, and certain members of the group
can completely denitrify ammonia to nitrate (104). Chloroflexi
are often found associated with nitrogen rich environments like
treatment plants that are designed to remove nitrogen (105). The
absence of Streptomyces in urea-fertilized soils but its significantly
higher abundance in compost-fertilized soil suggests a preference
for this genus for organic matter rather than simply nitrogen
alone. Apart from these specific examples, most of the genera
showing significant increases have members that prefer either of
these substrates (Figure 4). Further work using more sensitive
methods will be required to make stronger inferences into the
preference of each of these taxa and how they contribute to
nitrogen cycling in soil.

We found several fungal OTUs to be significantly associated
with the compost treatment. Of these, T. lanuginosus and
Myceliopthora sp. are thermophilic, compost-dwelling
saprotrophic fungi (106). They are likely inhabitants of the
compost and introduced into the study soil system via the
compost fertilizer. It is possible that these organisms could be
contributing to an improved role in decomposition and nutrient
cycling in the soil system, or that they are displacing native
soil microbes with the same ecological niche. Thermomyces
lanuginosus has mostly been observed as a saprotroph, although
it has been recorded as a potential opportunistic human
pathogen (107), and although pathogenicity of this organism
was not confirmed in this study, it is important to consider
the health and ecosystem risk of organisms introduced to soil
via compost fertilizer (108–110). The mechanisms for how
individual OTUs, such as the two found here, might successfully
establish themselves in a soil system was not part of this study
[although see Gravuer and Scow (28) for interesting insights].
However, mechanisms behind rhizosphere competency are
currently of great scientific and economic interest because of
the growing popularity of microbes as biofertilizers. Identifying
organisms that are rhizosphere competent and what factors
might influence rhizosphere competency are key to developing
more effective agricultural products (111).

The choice of fertilizer influenced network complexity (and
thus network stability and robustness) in both individual and
cross-domain networks. Complex organic fertilizers such as
compost resulted in higher network complexity, similar to
Schmid et al. (31) who found that long-term amendments
of manure or straw to agricultural soils increased bacterial
network complexity. Other studies investigating single-domain
networks have shown very clear differences in network topology
when comparing stark habitat differences like the rhizosphere

vs. bulk soil (29) or when comparing different microbiome
reactions to stressful conditions like extreme drought (32). Here
we showed that networks were more complex in compost-
fertilized soils as compared to the control or urea (Figure 5).
The less complex networks in urea relative to the control
suggests that simple sources of fertilizers may not be able
to support robust networks across multiple planting cycles.
Indeed, the amount of total C & N at cycle 6 (Table 1)
remained generally higher in compost, lending further support
to the idea that more complex fertilizer sources that slowly
release nutrients may be able to support stronger networks
of microbes over time. Cross-domain networks provide a
more comprehensive understanding of the complexity of soil
communities than individual-domain networks. Using cross-
domain network interactions such as those between prokaryotes
and fungi can provide a greater understanding of beneficial,
antagonistic, and associative interactions of the microbes in the
soil system (35, 37, 84). This study revealed greater connectivity
in cross-domain networks compared to individual-domain
networks, and from these network associations, we can create and
test hypotheses about how these organisms might interact. For
example, the OTU Nostocaceae sp. was less connected in the urea
network compared to the compost where it acted as a hub taxon
(Figure 6A). It is known that members of the bacterial family
Nostocaceae photosynthesize, and in some cases can fix nitrogen
(112). As a possible N contributor in this soil system,Nostocaceae
could be important in helping to provide a source of plant N in
an agricultural system. Future research is needed to investigate
whether urea negatively affects potentially beneficial hub taxa in
soil. Similarly, the OTUNostocaceae sp. has a negative association
with another hub taxon, Lasiodiplodia lignicola, in the compost
network (Figure 6A). Many Lasiodiplodia are recognized plant
and animal pathogens (113). This interaction between a possibly
beneficial microbe acting antagonistically toward a potential
plant pathogen could be further explored. Whether these hub
taxa behave as keystone species, whose removal could cause the
collapse of an ecosystem, or that they are lever species, which
can steer ecosystems toward specific community types (114), by
directly inhibiting or facilitating the growth of other microbes
and thus affecting overall the interconnectedness of communities
(115) pose an interesting set of questions to be tested in soil
community ecology.

Beyond generating hypotheses for the interactions among
different members of a microbiome, cross-domain networks
provide a different dimension within which to quantitatively
measure the microbiome interactions. For instance, Shi et al.
(29) showed that rhizosphere microbiome network complexity
increased with time relative to the bulk soil that had relatively
consistent and weak network complexity. In the present study,
network complexity can be used as a tool to quantitatively
measure a shift in microbiome in response to a soil fertilizer.
This has relevance in many areas of microbial community
ecology since it is still not yet trivial to quantitatively compare
shifts in microbial community composition across different
studies. Under the framework of network complexity, such
community shifts may be comparable across studies to provide
a quantitative measure that can translate to ecosystem function.
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Development of such methods would be a leap forward in
microbial ecology.

CONCLUSION

In this study, we provided multiple lines of evidence obtained
through multiple types of analyses that partially supported
the hypothesis that complex N fertilizers when applied to
soils have a detectable impact on plant growth, soil microbial
diversity, community structure, network topography, and change
network hub taxa as compared to urea, a simpler N fertilizer.
Unlike urea, a single application of compost, a complex N-
fertilizer, increased plant growth throughout the duration of
the experiment, selected for a subset of fungal OTUs, and
shifted overall microbial community structure. Fertilization with
compost also altered overall microbial network topography
by increasing network and hub taxa connectivity, especially
across domains. Network analysis can play an important role
in detecting cross-domain interactions that might be important
drivers of microbial interactions in the soil, and network
complexity could be developed into a tool that allows the research
community to quantitatively compare microbial shifts across
studies. Although our study was limited by the number of soils
tested, the type of fertilizers used, source inoculum identity
in the compost, and under controlled conditions, we showed
that even a single amendment of a complex N-fertilizer source
such as compost can have prolonged impact on soil nitrogen
concentration, plant growth, as well as soil microbial community
assembly under low-input settings. Future experiments using
a broader set of soils and wider range of fertilizers under
field setting will provide stronger support for the concepts
highlighted here.
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