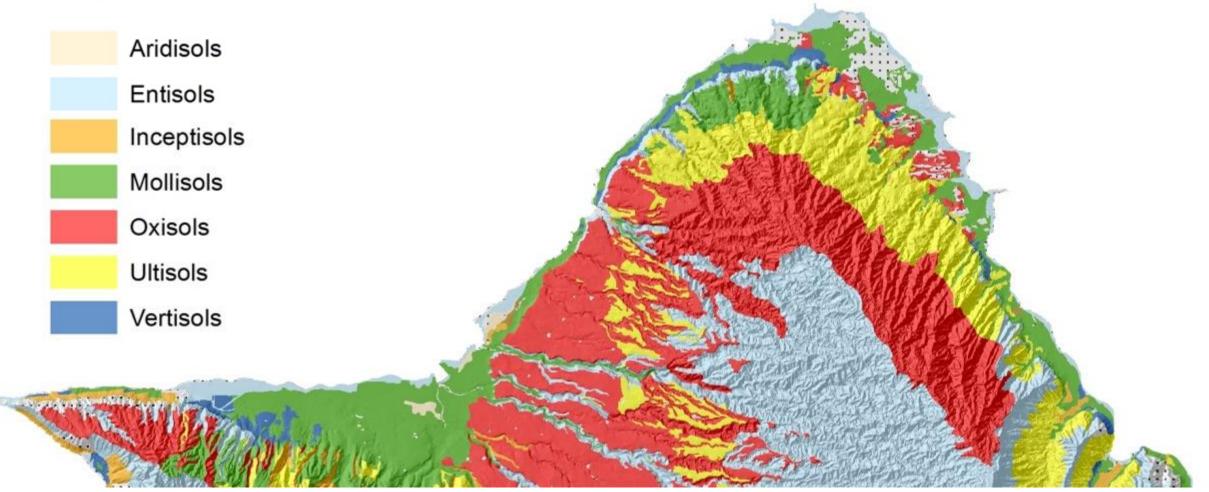

Soil Health Management for Soils of the North Shore

Soil Health Training ORCD March 29, 2022 Haleiwa Oahu


Kupuna Eddy Ka`anana

144

Dr. Goro Uehara

Soil Order

<u>Vertisol</u>

(Keaau series)

- Clay: 60% (very sticky)
- Drainage: 0.5 mm/hr
- Erodibility: 0.3
- pH: 7.5 8.0
- CEC: 35 cmol_c kg⁻¹
- Organic matter: 1.4%
- P availability: high
- Al toxicity: none
- Mn toxicity: none

Mollisol

(Waialua series)

- Clay: 60% (sticky)
- Drainage: 25 mm/hr
- Erodibility: 0.3
- pH: 6.5 7.0
- CEC: 20-25 cmol_c kg⁻¹
- Organic carbon: 3.5%
- P availability: high
- Al toxicity: none
- Mn toxicity: low potential

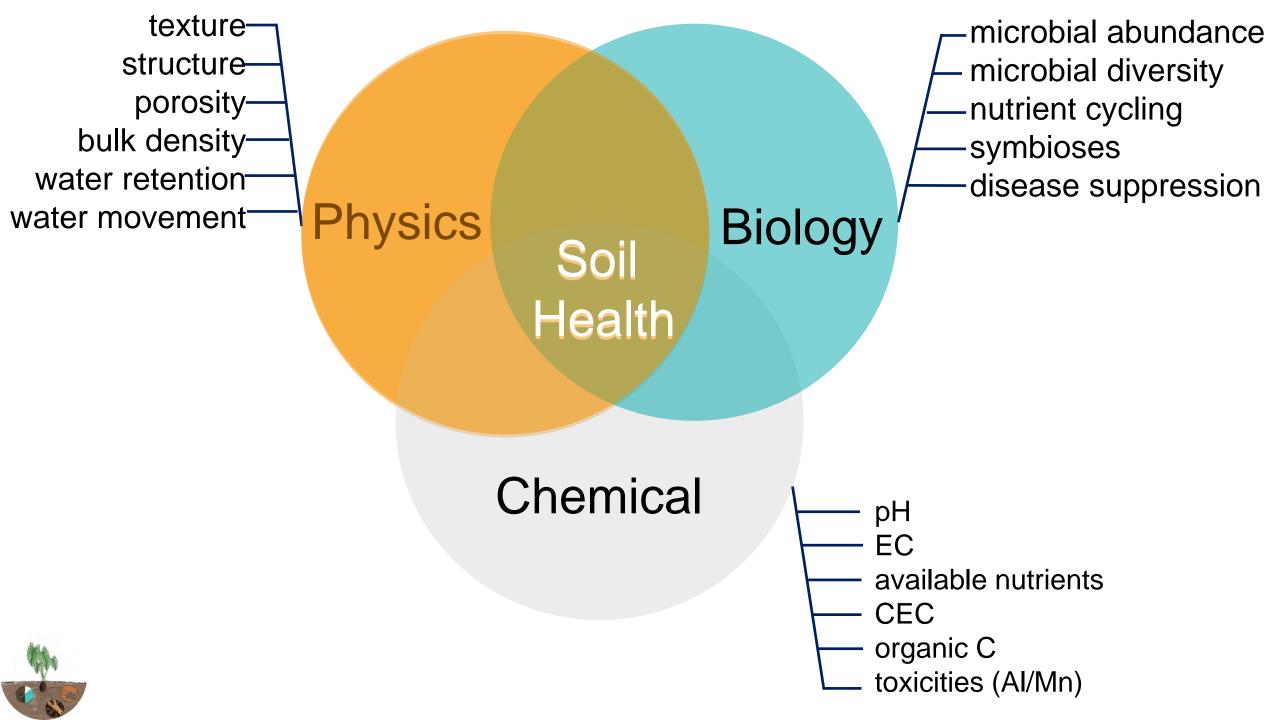
<u>Oxisol</u>

(Lahaina series)

- Clay: 60-80% (non-sticky)
- Drainage: 80 mm/hr
- Erodibility: 0.18

• pH: 5.5 – 6.0

- CEC: 10-13 cmol_c kg⁻¹
- Organic carbon: 1.4%
- P availability: low
- Al toxicity: low potential
- Mn toxicity: high potential


Soil Fertility vs Soil Health

According to FAO, soil fertility is the ability of a soil to supply the essential nutrients and adequate amounts of soil water to plant growth

- Nutrient supply
 - pH (controls solubility)
 - Cation exchange capacity (controls retention)
 - Texture (clay content and clay type)
 - Soil organic matter
 - Soil organic matter
 - Retention (CEC)
 - Solubility
 - Supply (microbial activity)
- Soil fertility test
 - pH and salinity (EC)
 - Total organic C and N
 - P and exchangeable bases (Ca, Mg, K, Na)
 - Sulfate, nitrate, ammonium
 - Micronutrients (B, Cu, Fe, Mb, Mn, Zn)

According to USDA, soil health is the the capacity of soil to function as a vital living system to sustain biological productivity, maintain environment quality, and promote plant, animal, and human health.

Inherent versus Dynamic Soil Properties

<u>Inherent</u> soil properties are difficult to change

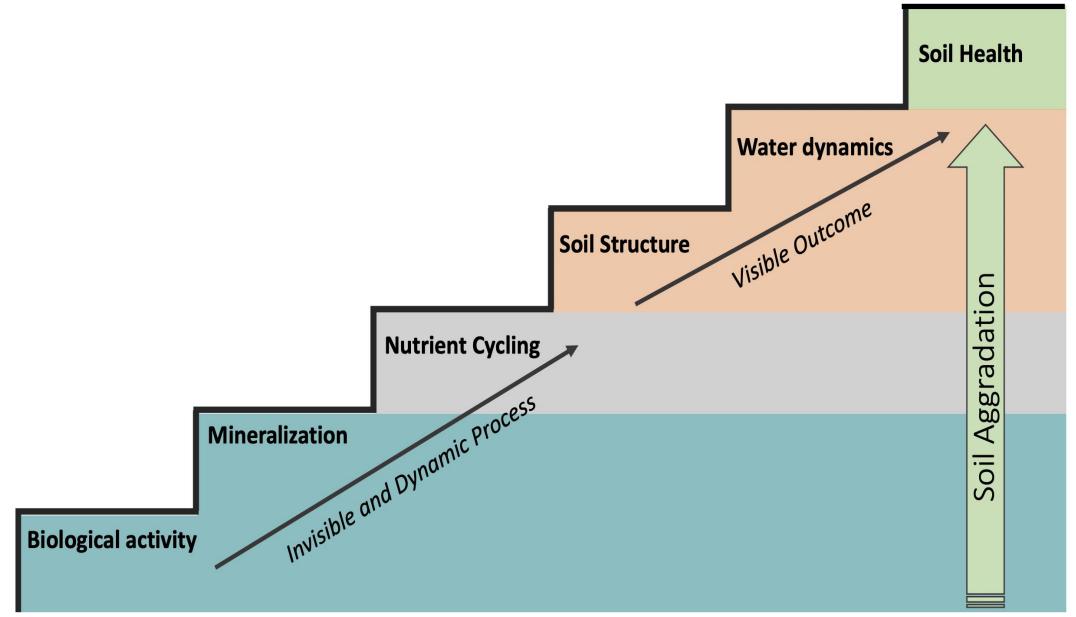
- texture
- clay mineralogy
- drainage
- soil depth

<u>Dynamic</u> soil properties are responsive to disturbances or stressors

- soil organic matter
- soil structure
- bulk density
- microbial diversity

Physical

structure porosity bulk density water retention water infiltration


Biological microbial abundance microbial diversity nutrient cycling resistance resilience

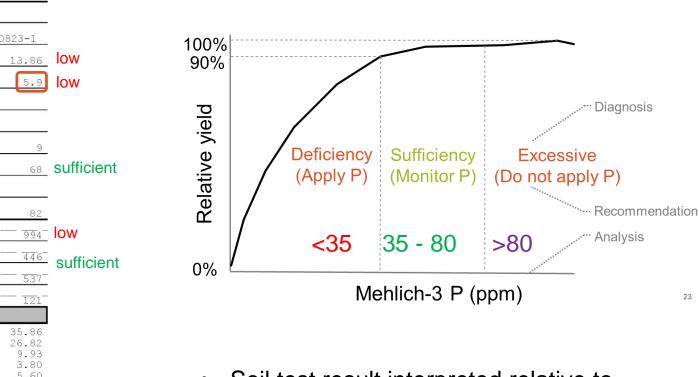
Soil organic matter

Chemical

available nutrients CEC detoxification buffering capacity

Soil Testing 1. Analysis 2. Interpretation - Diagnosis

- Recommendation


ppm

 $_{\rm Name}$ Crop Nutrient Solutions, Inc. $_{\rm City}$ Waimanalo

40541-1605 BROOKSIDE LABORATORIES, INC. SOIL AUDIT AND INVENTORY REPORT

State HI

S	Soil	Fert	ility	Tes

Soil test result interpreted relative to • crop yields

23

Goal is to maintain nutrient • concentration in the sufficiency range

Sample Identification Lab Number Total Exchange Capa pH (H ₂ O 1:1)	rb	ient Solutio T1-1 11/16/20 0819-1	ons, Inc. T1-2 0820-1	T1-3	Date12 	2/9/2020 T2-2	:
Sample Identification Lab Number Total Exchange Capa pH (H ₂ O 1:1)		0819-1		T1-3	T2-1	T2-2	i
Lab Number Total Exchange Capa pH (H ₂ O 1:1)		0819-1	0820-1				
Total Exchange Capa pH (H ₂ O 1:1)	city (ME/100 g) CE(0920-1		i		
рН (Н ₂ О 1:1)	aty (ME/100 g) CE(0020-1	0821-1	0822-1	0823-1	
		16.55	15.55	15.88	14.72	13.86	lc
Organic Matter (360°	and the second second second second		6.1	6.1	5.3	5.9	l lc
0	Organic Matter (360°C LOI) %						
Estimated Nitrogen I	Release ppm						1
SOLUBLE		20	8	8	16	9	í.
S MEHLIO			85	87	54	68	้รเ
SNOINE SN	P as P 20 ppm of P	5					
SOHA OLSEN	P as P ₂ O ppm of P		90	91	66	82	i
CALCIUM*	ppm	962		- 1216	786		lo
MAGNESIUM		441	551		333	446	-
CALCIOM* MAGNESIUM NAGNESIUM CHIONS C			559		481	537	S
SODIUM*	ppm			140		121-	
	11	BASE SATURAT		Second Second		and fair and	
Calcium % Magnesium % Potassium % Sodium % Other Bases % Hydrogen %		29.06 22.21 8.83 3.49 6.40 30.00	38.91 29.53 9.22 3.66 5.20 13.50	38.29 29.75 9.45 3.83 5.20 13.50	26.70 18.85 8.38 3.28 6.80 36.00	35.86 26.82 9.93 3.80 5.60 18.00	
		EXTRACTABI	LE MINORS				
Iron ^a Mang Copp	r* (ppm) (ppm) anese* (ppm) er* (ppm) (ppm)	0.43 185 92 12.95 11.80	0.58 134 153 10.69 12.29	0.54 136 149 9.99 11.73	0.44 172 64 9.67 9.20	0.42 147 117 9.57 10.85	•
Alum Solut	inum* (ppm) le Salts (mmhos/cm)	643	534 0.40	525 0.44	566 0.51	519 0.49	
HLO NH4	ides (ppm) N (ppm) N (ppm) gen (%) nic Carbon (%)	28.4 5.1 0.20 2.21	30.9 0.8 0.17 1.70	34.5 0.6 0.18 1.69	35.8 1.3 0.17 1.89	37.0 0.8 0.18 1.71	: (

* Mehlich III Extractable

Development of the Hawai'i Soil health Test

Tested 44 indicators

Biological

Chemical

Total PFLA Actinobacteria Gram + bacteria Gram – bacteria Eukaryotes Arbuscular mycorrhizal fungi Anaerobic fungi Fungi Actinomycete to bacteria ratio Fungi to bacteria ratio β-glucosidase β-glucosaminidase Acid phosphatase Potentially mineralizable N CO₂ burst

Organic carbon (%) Nitrogen concentration (%) OC to N ratio Hot water extractable carbon % of total OC that was HWEC Total water extractable C pool C pool respired in 4 months pН Extractable Ca²⁺, K⁺, Na⁺ Extractable P Dissolved organic C, Dissolved organic N Total dissolved N Inorganic N (Ammonium, Nitrate) Dissolved inorganic N Ratio of DOC to DON Crystalline Fe-oxides Poorly and non-crystalline minerals Ratio of Al_P to Al_H

Physical

Bulk density Soil hardness measured at surface Soil hardness measured at 15 cm Water holding capacity Mega water-stable aggregates Macro water-stable aggregates % sand % silt % clay

Selected indicators based on specific criteria

Sensitivity Reproducibility Feasibility Cost Time

Soil Health Indicators

% Organic Carbon	
DOC:DON	
Biological	
24-hour CO ₂ Burst	
ß-glucosidase, ß-glucosaminidase	
Potentially Mineralizable Nitrogen	

Chemical

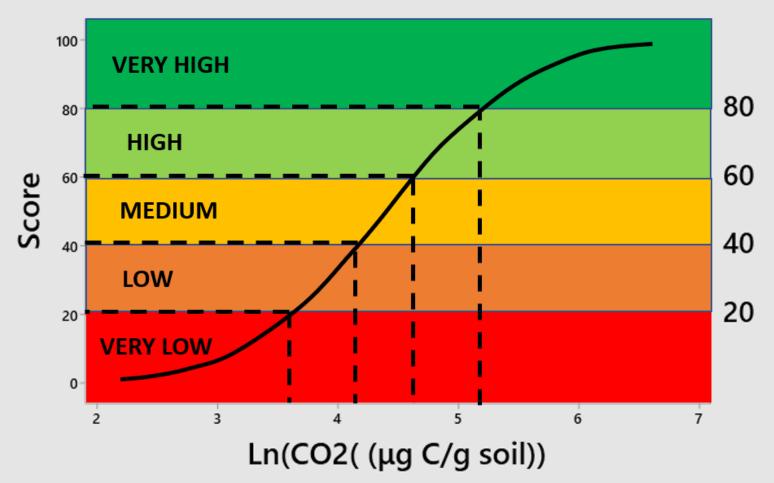
pH Dissolved Organic Carbon:Dissolved Organic Nitrogen ratio Hot Water Extractable Carbon

Physical

Water Holding Capacity

Water Stable Mega-Aggregates

Bulk Density (highly recommended, if possible)


N.

Indicator	Function and interpretation
Total organic carbon (%)	As the backbone of soil organic matter, a proxy measurement of the amount of soil organic matter; higher value typically relates to benefits of multiple biological, chemical, and physical aspects of soil function
Biological Properties	
24 hr CO₂ burst (µg g⁻¹)	Soil respiration in response to readily available substrate; higher value indicates high microbial activity and high quality organic matter pools
ß-glucosidase (mg p-nitrophenol kg ⁻¹ soil h ⁻¹)	Proximate microbial metabolism of amino-containing substrate; higher value indicates nutrient, predominantly N
ß-glucosaminidase (mg p-nitrophenol kg ⁻¹ soil h ⁻¹)	Potential N supply; higher value indicates bioavailable N forms to support soil productivity
Mineralizable nitrogen (µg g ⁻¹)	Potential N supply; higher value indicates bioavailable N forms to support soil productivity
Chemical Properties	
рН	Biological and nutrient availability; 6.0—7.0 is ideal, this is the pH range where plant essential elements are most available, and toxicities are negligible
DOC:DON	Integrated indicator of the balance of organic carbon and organic nitrogen pools; lower is better; higher value indicates disturbance - high DOC indicates available microbial substrate but also potential runoff, priming, and loss if too high, DON is readily broken down by soil microbes into inorganic forms, but low values are associated with N-deposition or poor nutrient management in disturbed systems
Hot water extractable carbon (µg g-1)	Readily available metabolic substrate; higher value indicates soluble organic matter and lysed microbial cells that support microbial activity
Physical Properties	
Water holding capacity (%)	Plant-water relations; higher values indicate improved water storage
Water stable mega-aggregates (%)	Water infiltration, porosity, aeration; higher values improve retention/transport water, promote root growth, provide habitat for microbes, reduce bulk density, and resist erosion
Bulk density (g cm ⁻³)	Infiltration, porosity, and rooting environment; lower values indicate soils that are light, aerated, porous, promote root growth, and more workable
W.	

Interpretation —

scoring functions are used to develop a soil health score

CO₂ Burst Scoring Function

Interpretation — relating to ecosystem services & economics

Regulating

Air quality, dimate, water runoff, erosion, natural hazards, pollination

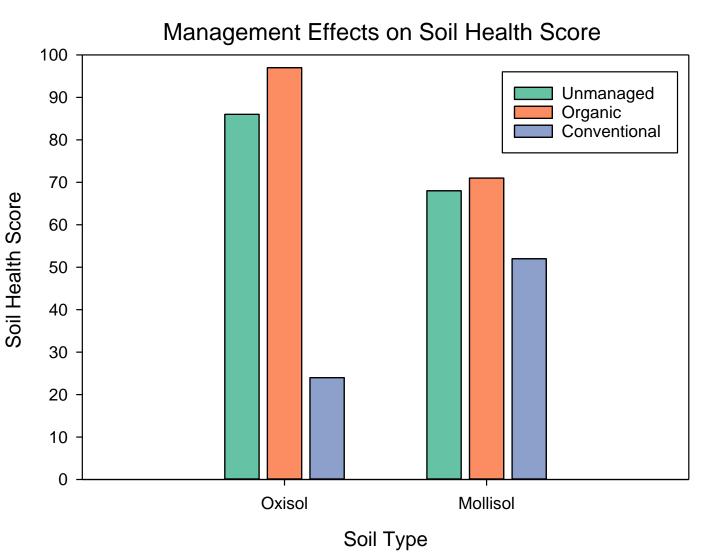
Supporting

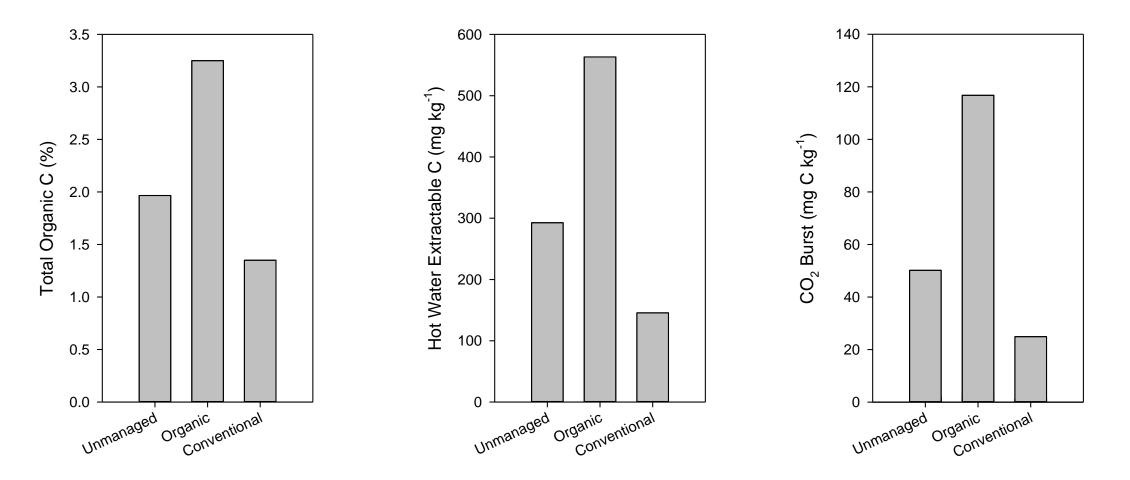
Nutrient cycling, water cycling, soil formation,

photosynethsis

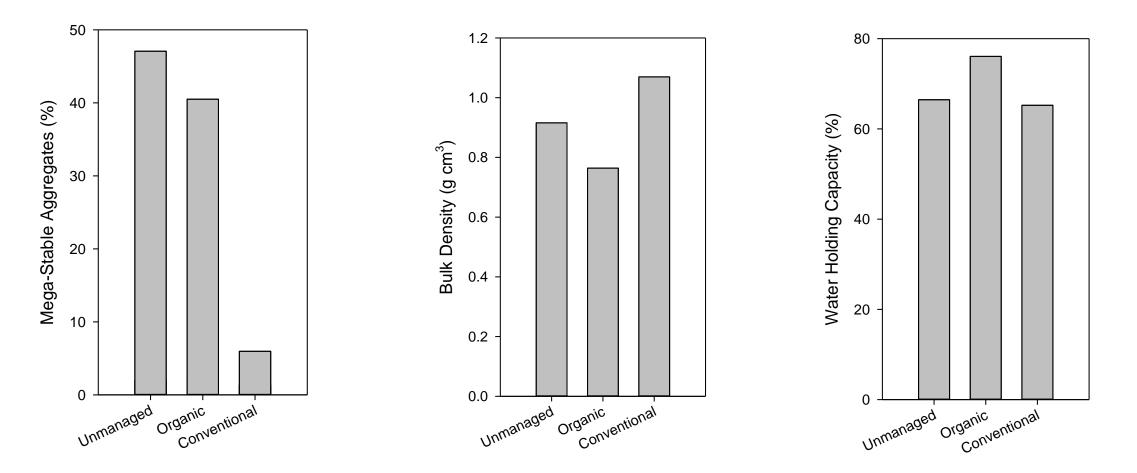
Cultural

Ethical values, existence values recreation and ecotourism Provisioning

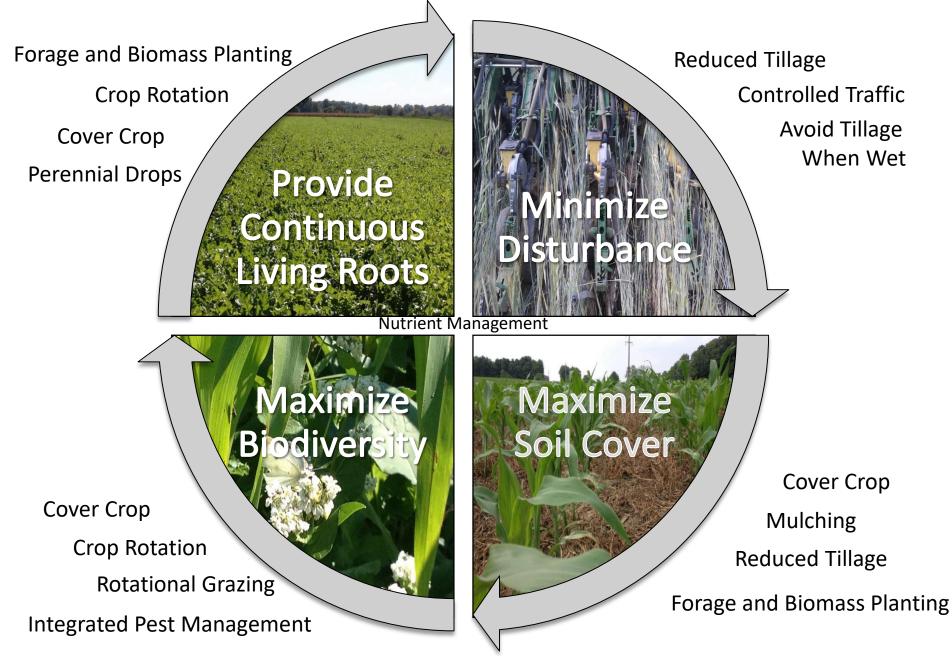

Food, fiber, biomass fuel, freshwater, and natural medicines


Use soil fertility and soil health testing to ensure crop productivity and environmental stewardship

Soil Management and Time in Management Impacts Soil Health


- Soil health in abandoned or unmanaged lands may depend on vegetation cover
 - The Oxisol under unmanaged Leucaena cover has a higher soil health score than the Mollisol under unmanaged guinea grass cover
- Land in long term conventional management shows lowest soil health scores
- Land once in conventional management or abandoned can be improved through organic soil management practices
 - Time in organic management and intensity of organic inputs impact soil health aggradation

Management Effects on Organic Matter and Biological Activity


- Management affects quantity of soil organic matter
- Management affects quality of soil organic matter
- Management affects life in the soil

Management Effects on Soil Physical Properties

- Loss of aggregates reduces drainage and aeration
- Increases in bulk density reduce aeration and make soil harder to till
- Water holding capacity increases with increasing organic matter

Soil Health Principles

Acknowledgements

- Hannah Hubanks
- Christine Tallamy-Glazer - Mitchell Loo and Aleric Krenz
- Dr. Tai Maaz
- Dr. Johanie Zayez
- Dr. Susan Crow
- Many undergraduate students
- Funding
 - USDA HATCH
 - USDA NIFA
 - USDA NRCS

Mahalo